GLOBAL CLIMATE CHANGE AND THE EQUITY - EFFICIENCY PUZZLE

Key Question

Under what conditions is the Pareto-efficient stock of atmospheric carbon independent of the initial distribution of carbon rights?

Policy Relevance

• The equity conflict could be separated from the issue of efficiency
• Equity could be based on allocating emission shares to individual nations
• Efficiency could be achieved through trading these rights internationally
Analysis Relevance

- Integrated Assessment Analyses typically employ a Negishi procedure.
- If there is separability between equity and efficiency in greenhouse gas abatement, Negishi weights do not change.

Small-scale Analytical Model

- R regions cooperate in the solution of the global climate problem.
- One internationally traded, private good and a common good, “climate quality”
- Two cases: market damages only, both market and non-market damages.
Market effects

Damages can be directly expressed in units of GDP, e.g., losses in agricultural production

Non-market effects

refer to those not included in the national income accounts, e.g., the impacts on biodiversity, environmental quality and human health

Market Damages Only

\[
\begin{align*}
\text{max} & \quad \sum_r \omega_r U_r[c_r] \\
\text{s.t} & \quad \sum_r \Phi_r(Q)_r y_r \geq \sum_r c_r + \sum_r g_r(a_r), \\
& \quad Q = \sum_r a_r \\
& \quad \text{Negishi weights do not affect optimality} \\
& \quad g'_r(a_r) = \left[\sum_{j=1,...,R} \Phi'_j(Q) y_j \right] \forall r \\
& \quad \text{Separability is observed}
\end{align*}
\]
Market & non-Market Effects

\[
\max \sum_r \omega_r U_r[c_r, Q]
\]

- Optimality depends on Negishi weights

\[
g'(a) = \left[\sum_j \Phi'_j(Q) y_j \right] + \sum \omega_j / \frac{\partial U_j}{\partial Q}
\]

\[
g'(a) - \left[\sum_j \Phi'_j(Q) y_j \right] = \sum_j \left[\frac{\partial U_j}{\partial Q} \frac{\partial U_j}{\partial c_j} \right]
\]

First Conclusions

Separability prevails if income effects do not affect aggregated willingness-to-pay (i.e., the price of the global common)

- or willingness-to-pay is independent of income
- or identical homothetic preferences
- or income effects are small
Large-scale numerical model

Simulations are based on MERGE 3 assignment rules for emission rights:

- **Egalitarian**: in proportion to initial population
- **Grandfathering**: in proportion to initial emissions
- **Pragmatic**: transition from grandfathering to egalitarian

Global Emissions

[Graph showing global emissions from 2000 to 2100 with trends for business-as-usual and three alternative burden-sharing rules.]
Price of Emission Permits

Negishi weights for the different assignment rules

<table>
<thead>
<tr>
<th>Country</th>
<th>Egalitarian</th>
<th>Pragmatic</th>
<th>Grandfathering</th>
<th>Egalitarian/Grandfathering</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>0.224516</td>
<td>0.224759</td>
<td>0.225367</td>
<td>0.996</td>
</tr>
<tr>
<td>WEUR</td>
<td>0.225625</td>
<td>0.225738</td>
<td>0.226022</td>
<td>0.998</td>
</tr>
<tr>
<td>JAPAN</td>
<td>0.089233</td>
<td>0.089272</td>
<td>0.089370</td>
<td>0.998</td>
</tr>
<tr>
<td>CANZ</td>
<td>0.032243</td>
<td>0.032280</td>
<td>0.032371</td>
<td>0.996</td>
</tr>
<tr>
<td>EEFSU</td>
<td>0.044120</td>
<td>0.044191</td>
<td>0.044370</td>
<td>0.994</td>
</tr>
<tr>
<td>CHINA</td>
<td>0.094155</td>
<td>0.094065</td>
<td>0.093837</td>
<td>1.003</td>
</tr>
<tr>
<td>INDIA</td>
<td>0.044032</td>
<td>0.043879</td>
<td>0.043962</td>
<td>1.012</td>
</tr>
<tr>
<td>MOPEC</td>
<td>0.047114</td>
<td>0.047117</td>
<td>0.047130</td>
<td>1.000</td>
</tr>
<tr>
<td>ROW</td>
<td>0.198962</td>
<td>0.198700</td>
<td>0.198041</td>
<td>1.005</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.000000</td>
<td>1.000001</td>
<td>1.000000</td>
<td></td>
</tr>
</tbody>
</table>